Multilayered YSZ/GZO films with greatly enhanced ionic conduction for low temperature solid oxide fuel cells.
نویسندگان
چکیده
Strain confinement in heterostructured films significantly affects ionic conductivity of the electrolytes for solid oxide fuel cells based on a multi-layered design strategy. Nearly ideal tensile strain can be achieved by a dedicated manipulation of the lattice mismatch between adjacent layers and fine control of the layer thicknesses to minimize the formation of dislocations and thus to achieve optimized ionic conduction. This strategy was demonstrated by a model system of multilayered 8 mol%Y(2)O(3) stabilized ZrO(2) (YSZ) with Gd(2)Zr(2)O(7) (GZO) films, which were epitaxially grown on Al(2)O(3) (0001) substrates by pulsed laser deposition (PLD) with the {111} planes of YSZ/GZO along the Al(2)O(3) [0 1 -1 0] direction. The tensile strain (3%) resulting from the lattice mismatch can be confined in individual YSZ layers with the formation of a coherent, dislocation-free interface upon the manipulation of the layer thickness below a critical value, e.g., down to 5 nm. The strained heterostructure displays a two order-of-magnitude increase in oxide-ion conductivity as compared with bulk YSZ, and a high ionic conductivity of 0.01 S cm(-1) at 475 °C can be achieved, five times greater than that of Gd-doped ceria/zirconia. The approach of strain confinement by fine control of lattice mismatch and layer thickness represents a promising strategy in developing advanced electrolytes enabling the miniaturization of solid-state ionic devices that can be operated at low temperatures below 500 °C.
منابع مشابه
Structure of multilayer ZrO2/SrTiO3
Multilayered oxide heteroepitaxial systems, including that of a 1-nm-thick Y2O3-stabilised ZrO2 (YSZ) sandwiched between layers of SrTiO3 (STO) [1], have been a subject of much interest lately due to their significantly enhanced ionic conductivities as compared to the bulk materials. We aim to provide the foundation for understanding this increase in conductivity by considering the atomic confi...
متن کاملBismuth oxide-based solid electrolytes for fuel cells
During the last three decades, a large number of investigations has been reported pertaining to the science and technology of solid oxide fuel cells (SOFCs) based mainly on the yttria-stabilized zirconia (YSZ) electrolyte. Because of the problems associated with the high temperature of operation ( ,-~ 1 000 ~ of the YSZ-based cells, there has been a substantial effort to develop alternative ele...
متن کاملMicrofabrication Methods to Improve the Kinetics of the
Solid oxide fuel cells are a potential electrical power source that is silent, efficient, modular, and capable of operating on a wide variety of fuels. Unfortunately, current technologies are severely limited in that they provide sufficient power output only at very high temperatures (>800°C). One reason for this is because the electrodes have very poor (and poorly understood) kinetics. The wor...
متن کاملIonic Conducting Composite as Electrolyte for Low Temperature Solid Oxide Fuel Cells
........................................................................................................................ I LIST OF PAPERS .............................................................................................................. II TABLE OF CONTENTS ................................................................................................. VII 1 INTRODUCTION ............
متن کاملPreparation and Conductivity Measurements of LSM/YSZ Composite Solid Oxide Electrolysis Cell Anode Materials
One of the most promising anode materials for solid oxide electrolysis cell (SOEC) application is the Sr-doped LaMnO3 (LSM) which is known to have a high electronic conductivity but low ionic conductivity. To increase the ionic conductivity or diffusion of ions through the anode, Yttria-stabilized Zirconia (YSZ), which has good ionic conductivity, is proposed to be combined with LSM to create a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 15 4 شماره
صفحات -
تاریخ انتشار 2013